https://www.fhwa.dot.gov/publications/research/safety/pedbike/05085/pdf/combinedlo.pdf

Federal Highway Administration University Course on Bicycle and Pedestrian Transportation

Publication No. FHWA-HRT-05-133 July 2006

LESSON 19: GREENWAYS AND SHARED-USE

PATHS309

19.1 The popularity of many urban paths has shown that large volumes of pathway traffic, with a diverse user

mix, can create congested and conflictive path conditions similar to that on urban highways. Therefore,

planning and design of shared-use paths must be done with the same care and attention to recognized

guidelines and user needs as the design of on-roadway bikeways and other transportation facilities.

19.3 Shared-use paths are typically used by a diverse set of users representing different travel modes, using

different types of equipment and traveling at different speeds (see figure 19-1). It is important to

understand, even within the basic user categories of bicyclists, pedestrians, and skaters, how diverse path

users can be. A recent study, Characteristics of Emerging Road and Trail Users and Their Safety, begins

to document the various characteristics of these users and their equipment.(2)

• Bicyclists include adults using traditional bicycles, but also child bicyclists, cyclists pulling

trailers or trail-a-bikes, and riders of tandem bicycles, recumbent bicycles, hand cycles, tricycles,

and a variety of four-wheeled human-powered vehicles.

• Pedestrians include joggers, runners, and people walking dogs and pushing strollers, as well as

disabled people. Today, disabled and injured people have a wide variety of assistive devices

available to aid in travel or enable participation in trail activities, including powered and manual

wheelchairs, powered scooters, tricycles, hand cycles, and racing wheelchairs, as well as the more

traditional, crutches, walkers, and canes.

• Skaters include users as diverse as in-line skaters, kick scooters, skateboarders, and people using roller-skis.

In addition to diverse users and a variety of equipment used, shared-use paths serve a wide variety of trip

purposes. User behavior, such as travel speed and willingness to make stops, varies considerably with

different trip purposes. Especially in urban and suburban areas, paths are routinely used for commuting to

work or school, running errands, visiting friends, getting exercise, observing nature, and seeking

recreation and enjoyment of the outdoors.

Moreover, people of all ages and abilities use and enjoy shared-use paths—from the very young to the

very old, from the novice cyclist to the marathon trainer. Accommodating and balancing the various

needs created by this diverse user market is a central challenge for today's shareduse path planners and designers.

19.4 User Conflict

User conflicts can emerge when user goals differ. In Conflicts on Multiple-Use Trails, Moore urges trail

planners, designers, and managers "not to treat conflict as an inherent incompatibility among different

trail activities, but as goal interference attributed to another's behavior."(3) In addition to following good

trail planning and design principals, Moore describes how user conflicts can be successfully minimized

through effective path management.

Understanding the diverse social and operational needs of expected users and designing trails to

accommodate projected volumes and mode mixes is critical to building successful trail systems—trails

that will serve multiple roles in a community's transportation and recreation network.

19.5 Shared-Use Path Types and Settings

Shared-use paths can be developed on a variety of rights-of-way and exist in many types of settings,

including urban, suburban, exurban, and rural. Increasingly long paths use a variety of rights-of-way and

pass through many diverse environments. The following is a list of the most common shared-use path

types:

• Rail-trails—Paths created on abandoned railroad corridors.

Rails-with-trails—Paths created adjacent to active rail lines (see figure 19-2), such as freight

railroads, commuter rail lines, light rail, or other rail transit facilities.

• Greenway trails—Paths incorporated into linear natural areas such as parks or conservation

areas, along stream or river corridors, along waterfronts (see figure 19-3) including beaches and

shorelines, or along flood control levees, etc.

- Paths adjacent to highways, roads, and parkways—Sometimes referred to as sidepaths.
- Towpaths—Paths created along abandoned canals by using the towpath or canal bed.
- Paths using utility corridors—Such as power lines, water supply, or sewer corridors, irrigation

canals, or other utility lines.

• Other paths—Such as those developed within university campuses, on other institutional

properties, or within large residential and/or commercial developments.

19.6 Planning

Greenways: A Guide to Planning, Design and Development and Trails for the Twenty-First Century are

two well-researched resources on the subject of planning that both emphasize its importance in the

process of creating a shared-use path.(4,5) Three key objectives that should be addressed during the

planning phase comprise communicating a clear vision, goals, and concept for the facility; building

community support; and developing a comprehensive corridor assessment. Other plan

components may

include: documentation of community benefits and opportunities, environmental impact assessments,

preliminary cost estimates, funding and phasing options, and implementation plans. Public involvement,

interagency coordination, and interjurisdictional coordination should also be considered during early

planning activities.

Trails for the Twenty-First Century offers a helpful guide to planning process terminology and includes

four key steps in the pathway planning process:(5)

- 1. Trail vision or concept
- 2. The master plan
- 3. Preliminary design
- 4. Construction drawings and documents

Too often, agencies charged with creating a shared-use path fail to understand or adopt a crucial pathway

planning principal—that by definition, shared-use paths serve both transportation and recreation

functions. As such, they must be planned and designed to be a part of two systems of community

infrastructure: parks and recreation, and transportation.

19.8 Greenway Paths

The most common feature of many greenways is a trail...with so many types of users in

the United States, there are many types of trails, and elementary though it may seem, it is

important to distinguish among them. All greenway trails should be compatible with the

natural landscape and its functions.(4)

What distinguishes the typical greenway path from other types of shared-use paths is that the path is only

one component of a larger corridor, which is primarily defined by its environmental features or functions,

including waterways, forests, wetlands, shorelines, or other natural or restored landscapes. Moreover, the

reason that the corridor exists may not be primarily to create a context for a path, but for larger

environmental purposes such as habitat preservation, to absorb and accommodate floodwaters, or to

provide parkland and recreation resources for human communities.

Greenway paths may be incorporated into built natural areas such as linear urban parks or parkways,

along flood control levees or along urban waterfronts. Greenway paths can also be created in natural areas

such as along beaches and shorelines, in conservation areas, or along stream or river corridors.

Greenway paths present unique planning and design challenges. The following issues are especially

significant, as many of them have received extensive study and best-practice analysis:

- Positioning the pathway within the greenway corridor.
- Minimizing and managing environmental disturbance and impact, both during path construction

and as the path sustains ongoing use.

- Reducing stormwater runoff and protecting against erosion.
- Incorporating environmental restoration such as bioengineering and low-impact stormwater

management techniques.

• Designing the trail to be compatible with or even reinforce the larger goals and purposes of the corridor.

19.9 Paths Adjacent to Roadways

In select circumstances, locating shared-use paths adjacent to roads may be the best or only option

available. In settings such as parkways or roadways with little or no access on one side and sufficient

space to provide a path and buffer, locating paths adjacent to roads may be preferable to other options.

Roads or streets that have low motor-vehicle traffic volumes and/or low traffic speeds can also be viable

candidates for accommodating sidepaths, especially to provide continuity for a path that is otherwise on

an independent right-of-way, but has critical gaps.

However, in typical cases, if a two-way shared-use path is located immediately adjacent to a roadway,

some operational problems are likely to occur. The extent of these problems will depend on the context

and layout of the roadway, number and nature of cross-streets, driveways and access ramps, and adjacent

motor vehicle travel speeds. The AASHTO Guide for the Development of Bicycle Facilities enumerates

nine potential problems and safety issues that need to be given serious consideration when planning or

designing a shared-use path adjacent to a roadway, as for example:(1)

• When the bicycle path ends, bicyclists going against traffic will tend to continue traveling on the

wrong side of the street. Likewise, bicyclists approaching a bicycle path often travel on the wrong

side of the street in getting to the path. Wrong-way travel by bicyclists is a major cause of bicycle/automobile crashes and should be discouraged at every opportunity.

• At intersections, motorists entering or crossing the roadway often will not notice bicyclists

coming from their right, as they are not expecting contraflow vehicles. Even bicyclists coming

from the left often go unnoticed, especially when sight distances are poor.

• Although the shared-use path should be given the same priority through intersections as the

parallel highway, motorists falsely expect bicyclists to stop or yield at all cross-streets and

driveways. Efforts to require or encourage bicyclists to yield or stop at each cross-street and

driveway are inappropriate and frequently ignored by bicyclists.

19.10

Trail Width and Striping

Under most conditions, the recommended paved width for two-directional trails is 3 m (10 ft); however

3.7- to 4.3-m (12- to 14-ft) widths are preferred where heavy traffic is expected (see figure 19-4). In select

instances, a reduced width of 2.4 m (8 ft) can be adequate, especially if one or the other of the bicycle or

pedestrian modes has a small percentage of overall use. A recent study, Evaluation of Safety Design and

Operation of Shared Use Paths, found that from 3 to 4.9 m (10 to 16 ft), every additional foot in width

significantly improves the LOS for bicyclists using shared-use paths.(11)

This study also found that centerline stripes have a significant impact on how bicyclists tend to operate on

shared-use paths: (11)

A striped centerline has a strong impact on the bicyclist's perception of freedom to maneuver. This finding appears to support the intent of trail designers in providing a centerline, which is to clearly delineate two opposing travel lanes. A centerline reinforces the idea that to pass a slower moving user, the cyclist may need to use the travel lane of opposing trail users, and should pass only when the opposing lane is open...there may be valid safety reasons for providing a centerline stripe, particularly on crowded trails, on curves with limited sight distance, and in other appropriate circumstances.

Additional details regarding striping and marking of paths are found in MUTCD.